Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Improved read performance in a cost-effective, fault-tolerant parallel virtual file system (CEFT-PVFS)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Yifeng Zhu ; Dept. of Comput. Sci. & Eng., Nebraska Univ., Lincoln, NE, USA ; Hong Jiang ; Xiao Qin ; Dan Feng
more authors

Due to the ever-widening performance gap between processors and disks, I/O operations tend to become the major performance bottleneck of data-intensive applications on modern clusters. If all the existing disks on the nodes of a cluster are connected together to establish high performance parallel storage systems, the cluster's overall performance can be boosted at no additional cost. CEFT-PVFS (a RAID 10 style parallel file system that extends the original PVFS), as one such system, divides the cluster nodes into two groups, stripes the data across one group in a round-robin fashion, and then duplicates the same data to the other group to provide storage service of high performance and high reliability. Previous research has shown that the system reliability is improved by a factor of more than 40 with mirroring while maintaining a comparable write performance. This paper presents another benefit of CEFT-PVFS in which the aggregate peak read performance can be improved by as much as 100% over that of the original PVFS by exploiting the increased parallelism. Additionally, when the data servers, which typically are also computational nodes in a cluster environment, are loaded in an unbalanced way by applications running in the cluster, the read performance of PVFS will be degraded significantly. On the contrary, in the CEFT-PVFS, a heavily loaded data server can be skipped and all the desired data is read from its mirroring node. Thus the performance will not be affected unless both the server node and its mirroring node are heavily loaded.

Published in:

Cluster Computing and the Grid, 2003. Proceedings. CCGrid 2003. 3rd IEEE/ACM International Symposium on

Date of Conference:

12-15 May 2003