By Topic

Magnetic resonance imaging (MRI) simulation on a grid computing architecture

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Benoit-Cattin, H. ; CREATIS, CNRS, Villeurbanne, France ; Bellet, F. ; Montagnat, J. ; Odet, C.

In this paper, we present the implementation of a Magnetic Resonance Imaging (MRI) simulator on a GRID computing architecture. The simulation process is based on the resolution of Bloch equation [1] in a 3D space. The computation kernel of the simulator is distributed to the grid nodes using MPICH-G2 [2]. The results presented show that simulation of 3D MRI data is achieved with a reasonable cost which gives new perspectives to MRI simulations usage.

Published in:

Cluster Computing and the Grid, 2003. Proceedings. CCGrid 2003. 3rd IEEE/ACM International Symposium on

Date of Conference:

12-15 May 2003