By Topic

Criticality-based analysis and design of unstructured peer-to-peer networks as "Complex systems"

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Banaei-Kashani, F. ; Comput. Sci. Dept., Univ. of Southern California, Los Angeles, CA, USA ; Shahabi, C.

Due to enormous complexity of the unstructured peer-to-peer networks as large-scale, self-configure, and dynamic systems, the models used to characterize these systems are either inaccurate, because of oversimplification, or analytically inapplicable, due to their high complexity. By recognizing unstructured peer-to-peer networks as "complex systems ", we employ statistical models used before to characterize complex systems for formal analysis and efficient design of peer-to-peer networks. We provide two examples of application of this modeling approach that demonstrate its power. For instance, using this approach we have been able to formalize the main problem with normal flooding search, propose a remedial approach with our probabilistic flooding technique, and find the optimal operating point for probabilistic flooding rigorously, such that it improves scalability of the normal flooding by 99%.

Published in:

Cluster Computing and the Grid, 2003. Proceedings. CCGrid 2003. 3rd IEEE/ACM International Symposium on

Date of Conference:

12-15 May 2003