By Topic

Leveraging non-uniform resources for parallel query processing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Mayr, T. ; IBM Almaden Res. Center, San Jose, CA, USA ; Bonnet, P. ; Gehrke, J. ; Seshadri, P.

Modular clusters are now composed of nonuniform nodes with different CPUs, disks or network cards so that customers can adapt the cluster configuration to the changing technologies and to their changing needs. This challenges dataflow parallelism as the primary load balancing technique of existing parallel database systems. We show in this paper that dataflow parallelism alone is ill suited for modular clusters because running the same operation on different subsets of the data can not fully utilize non-uniform hardware resources. We propose and evaluate new load balancing techniques that blend pipeline parallelism with data parallelism. We consider relational operators as pipelines of fine-grained operations that can be located on different cluster nodes and executed in parallel on different data subsets to best exploit non-uniform resources. We present an experimental study that confirms the feasibility and effectiveness of the new techniques in a parallel execution engine prototype based on the open-source DBMS Predator.

Published in:

Cluster Computing and the Grid, 2003. Proceedings. CCGrid 2003. 3rd IEEE/ACM International Symposium on

Date of Conference:

12-15 May 2003