By Topic

Low-latency control structures with slack

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bystrov, A. ; Sch. of Electr., Electron. & Comput. Eng., Newcastle upon Tyne Univ., UK ; Sokolov, D. ; Yakovlev, A.

OR-causality, or weak precedence, is a way to increase performance of asynchronous circuits in on-chip interfacing, computation process control, early evaluation in data-flow structures, error-recovery etc. The difficulties in hazard free implementation of OR-causality restricted its use to the simplest cases of merging. We advance this subject by introducing slack in the taxonomy of OR-causality, which allows latency reduction to be achieved in the context of highly pipelined operation. Petri net models and circuit structures are proposed for the bounded and "almost" unbounded merge cases. The specifics of data or control token stream merging are studied in a number of examples. Those show the applicability of the new merge constructs to a wide range of functional operators, including arithmetic, Boolean and threshold functions.

Published in:

Asynchronous Circuits and Systems, 2003. Proceedings. Ninth International Symposium on

Date of Conference:

12-15 May 2003