By Topic

Selecting the variables that train a self-organizing map (SOM) which best separates predefined clusters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Laine, S. ; Lab. of Comput. & Inf. Sci., Helsinki Univ. of Technol., Espoo, Finland

The paper presents how to find the variables that best illustrate a problem of interest when visualizing with the self-organizing map (SOM). The user defines what is interesting by labeling data points, e.g. with alphabets. These labels assign the data points into clusters. An optimization algorithm looks for the set of variables that best separates the clusters. These variables reflect the knowledge the user applied when labeling the data points. The paper measures the separability, not in the variable space, but on a SOM trained into this space. The found variables contain interesting information, and are well suited for the SOM. The trained SOM can comprehensively visualize the problem of interest, which supports discussion and learning from data. The approach is illustrated using the case of the Hitura mine; and compared with a standard statistical visualization algorithm, the Fisher discriminant analysis.

Published in:

Neural Information Processing, 2002. ICONIP '02. Proceedings of the 9th International Conference on  (Volume:4 )

Date of Conference:

18-22 Nov. 2002