Cart (Loading....) | Create Account
Close category search window
 

Interface delamination in plastic IC packages induced by thermal loading and vapor pressure - a micromechanics model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Liu, P. ; Dept. of Mech. Eng., Nat. Univ. of Singapore, Singapore ; Cheng, L. ; Zhang, Y.W.

A micromechanics model and an associated computational scheme are proposed to study interface delamination in plastic integrated circuit (IC) packages induced by thermal loading and vapor pressure. The die and die-pad are taken as elastic materials, while the die-attach and molding compound are taken as elasto-visco-plastic materials. The interface between molding compound and the die-pad is characterized by a cohesive law. The key parameters of this law are the interface strength and interface energy. The vapor-induced pressure along the interface is incorporated by way of a micromechanics model. Parametric studies are conducted to understand interface properties and vapor pressure effects on interface delamination. Under purely thermal loading, both weak and strong interfaces are highly resistant to interface failure. However, the combined effects of thermal loading and vapor pressure arising from moisture trapped within the interface can cause total delamination at the interface. Once delamination has initiated at a weak interface, no significant increase in thermal loading and vapor pressure is required for the delaminated zone to grow to a macro-crack and subsequently to catastrophic failure referred to as popcorn cracking. The critical factors controlling the occurrence of popcorn cracking are the interface adhesion strength and interface vapor pressure.

Published in:

Advanced Packaging, IEEE Transactions on  (Volume:26 ,  Issue: 1 )

Date of Publication:

Feb. 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.