Cart (Loading....) | Create Account
Close category search window

Effect of a transient helium flow behavior on velocity of normal zone propagation in forced cooled fusion S/C magnets [for ITER]

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Volkov, A. ; D.V. Efremov Sci. Res. Inst. of Electrophys. Apparatus, Leningrad, USSR ; Kalinin, V.V.

A numerical analysis of normal zone propagation along the length of a cable-in-conduit type conductor for large scale magnets is described. The transient temperature propagation along the cable length, the helium pressure rise, and induced helium flow velocities in long cable cooling paths have been calculated on the basis of the computer code developed. As an example, Nb3Sn conductors for the International Thermonuclear Experimental Reactor (ITER) have been considered. Results of this investigation show that during quench the velocity of the normal zone in the cable-in-conduit conductor can vary in a wide range from 1 m/s to 40 m/s. It is noted that these velocities depend greatly on the character of magnetic field variation along the conductor length. As a result, the maximum velocity of the normal zone in the ITER central solenoid is higher than that in the ITER toroidal field coil

Published in:

Magnetics, IEEE Transactions on  (Volume:28 ,  Issue: 1 )

Date of Publication:

Jan 1992

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.