By Topic

Semi-Markov decision problems and performance sensitivity analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Xi-Ren Cao ; Hong Kong Univ. of Sci. & Technol., China

Recent research indicates that Markov decision processes (MDPs) can be viewed from a sensitivity point of view; and the perturbation analysis (PA), MDPs, and reinforcement learning (RL) are three closely related areas in optimization of discrete-event dynamic systems that can be modeled as Markov processes. The goal of this paper is two-fold. First, we develop the PA theory for semi-Markov processes (SMPs); and then we extend the aforementioned results about the relation among PA, MDP, and RL to SMPs. In particular, we show that performance sensitivity formulas and policy iteration algorithms of semi-Markov decision processes can be derived based on the performance potential and realization matrix. Both the long-run average and discounted-cost problems are considered. This approach provides a unified framework for both problems, and the long-run average problem corresponds to the discounted factor being zero. The results indicate that performance sensitivities and optimization depend only on first-order statistics. Single sample path-based implementations are discussed.

Published in:

Automatic Control, IEEE Transactions on  (Volume:48 ,  Issue: 5 )