By Topic

From association to classification: inference using weight of evidence

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yang Wang ; Pattern Discovery Software Syst. Ltd., Waterloo, Ont., Canada ; Wong, Andrew K.C.

Association and classification are two important tasks in data mining and knowledge discovery. Intensive studies have been carried out in both areas. But, how to apply discovered event associations to classification is still seldom found in current publications. Trying to bridge this gap, this paper extends our previous paper on significant event association discovery to classification. We propose to use weight of evidence to evaluate the evidence of a significant event association in support of, or against, a certain class membership. Traditional weight of evidence in information theory is extended here to measure the event associations of different orders with respect to a certain class. After the discovery of significant event associations inherent in a data set, it is easy and efficient to apply the weight of evidence measure for classifying an observation according to any attribute. With this approach, we achieve flexible prediction.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:15 ,  Issue: 3 )