By Topic

Haar wavelets for efficient similarity search of time-series: with and without time warping

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chan, F.K.-P. ; Dept. of Comput. Sci. & Eng., Chinese Univ. of Hong Kong, China ; Fu, A.W.-C. ; Yu, C.

We address the handling of time series search based on two important distance definitions: Euclidean distance and time warping distance. The conventional method reduces the dimensionality by means of a discrete Fourier transform. We apply the Haar wavelet transform technique and propose the use of a proper normalization so that the method can guarantee no false dismissal for Euclidean distance. We found that this method has competitive performance from our experiments. Euclidean distance measurement cannot handle the time shifts of patterns. It fails to match the same rise and fall patterns of sequences with different scales. A distance measure that handles this problem is the time warping distance. However, the complexity of computing the time warping distance function is high. Also, as time warping distance is not a metric, most indexing techniques would not guarantee any false dismissal. We propose efficient strategies to mitigate the problems of time warping. We suggest a Haar wavelet-based approximation function for time warping distance, called Low Resolution Time Warping, which results in less computation by trading off a small amount of accuracy. We apply our approximation function to similarity search in time series databases, and show by experiment that it is highly effective in suppressing the number of false alarms in similarity search.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:15 ,  Issue: 3 )