By Topic

P-AutoClass: scalable parallel clustering for mining large data sets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Pizzuti, C. ; Inst. of High Performance Comput. & Networking, Italian Nat. Res. Council, Rende, Italy ; Talia, D.

Data clustering is an important task in the area of data mining. Clustering is the unsupervised classification of data items into homogeneous groups called clusters. Clustering methods partition a set of data items into clusters, such that items in the same cluster are more similar to each other than items in different clusters according to some defined criteria. Clustering algorithms are computationally intensive, particularly when they are used to analyze large amounts of data. A possible approach to reduce the processing time is based on the implementation of clustering algorithms on scalable parallel computers. This paper describes the design and implementation of P-AutoClass, a parallel version of the AutoClass system based upon the Bayesian model for determining optimal classes in large data sets. The P-AutoClass implementation divides the clustering task among the processors of a multicomputer so that each processor works on its own partition and exchanges intermediate results with the other processors. The system architecture, its implementation, and experimental performance results on different processor numbers and data sets are presented and compared with theoretical performance. In particular, experimental and predicted scalability and efficiency of P-AutoClass versus the sequential AutoClass system are evaluated and compared.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:15 ,  Issue: 3 )