By Topic

Current-perpendicular-to-plane multilayer sensors for magnetic recording

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

We investigated current-perpendicular-to-plane giant magnetoresistance multilayer (CPP-ML) sensors with an active region of (1.0-nm CoFe/1.8-nm Cu) × 15 nm. These sensors would allow a shield-to-shield spacing of less than 50 nm. Square CPP-ML devices ranging in size from 120 to 365 nm on a side have been fabricated and tested. In this paper, we focus on the magnetotransport properties of the 140 nm devices, which were measured at room temperature. The average device characteristics were found to be Rmax=1.0 Ω, Rmin=0.81 Ω, DR=191.1 Ω, and DR/Rmin=23.7. These values were measured by using a four-point probe geometry; the data were not corrected for lead or contact resistance and no current crowding was observed. After correction for buffer and seed layer resistances, the magnetoresistance had an intrinsic DR/Rmin value of 55.6%. Our measured results are in good agreement with values obtained with a simple two-current series resistance model. We demonstrate that our CPP-ML structures are viable candidates to replace current-in-plane spin valves as the next generation magnetic recording readback sensor.

Published in:

Magnetics, IEEE Transactions on  (Volume:39 ,  Issue: 3 )