By Topic

Precision motion control with disturbance observer for pulsewidth-modulated-driven permanent-magnet linear motors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Kok Kiong Tan ; Dept. of Electr. Eng., Nat. Univ. of Singapore, Singapore ; Tong Heng Lee ; Hui Fang Dou ; Shok Jun Chin
more authors

In this paper, we address the problem of precision motion control of permanent-magnet linear motors (PMLMs) under the influence of significant disturbances. We establish a mathematical model of a PMLM driven by a sinusoidal pulsewidth-modulated (PWM) amplifier, obtaining it from a describing function analysis of the essentially nonlinear characteristics. The overall model (PWM+PMLM) inevitably inherits uncertainties in the face of load changes, system parameter perturbation, noise, and inherent system nonlinearities, etc., all of which constitute disturbances to the control system that will adversely affect the precision and accuracy. We propose a robust control scheme employing a disturbance observer to address the sensitivity of the control performance to the disturbances. Real-time experimental results are provided to verify and confirm the practical effectiveness of the proposed approach.

Published in:

Magnetics, IEEE Transactions on  (Volume:39 ,  Issue: 3 )