By Topic

Edge element computations of eddy currents in laminated materials

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Yueqiang Liu ; Dept. of Electromagn., Chalmers Univ. of Technol., Goteborg, Sweden ; Bondeson, A. ; Bergstrom, R. ; Larson, M.G.
more authors

We studied different types of edge elements in three-dimensional computations of power dissipation in laminated conductors. The standard, lowest order (mixed first and zeroth order) basis on tetrahedral grids produces inaccurate results and grossly overestimates the losses. However, on hexahedral grids, aligned with the laminations, the standard edge elements give much more accurate results. If the grid cannot be aligned with the laminations, the dissipation can still be accurately computed with the lowest order hexahedral elements by using midpoint integration. Tetrahedral grids give accurate results if the complete first order basis is included, but this doubles the number of degrees of freedom.

Published in:

Magnetics, IEEE Transactions on  (Volume:39 ,  Issue: 3 )