By Topic

Windmill modeling consideration and factors influencing the stability of a grid-connected wind power-based embedded generator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Salman, S.K. ; Sch. of Eng., Robert Gordon Univ., Aberdeen, UK ; Teo, A.L.J.

Generation of electricity using wind power has received considerable attention worldwide in recent years. In order to investigate the impacts of the integration of wind farm into utilities' network, various windmill models have been developed. One such impact is related to the critical clearing time (CCT) of the wind power based embedded generators (WPBEGs). The work in this paper has shown that oversimplification of the modeling of windmill mechanical drive train could introduce significant error in the value of the CCT that defines the stability limit of an integrated wind farm. This paper also reports investigation into the factors that influence the dynamic behavior of the WPBEGs following network fault conditions. It is shown that wind farm CCT can be affected by various factors contributed by the host network. Results obtained from several case studies are presented and discussed. This investigation is conducted on a simulated grid-connected wind farm using EMTP.

Published in:

Power Systems, IEEE Transactions on  (Volume:18 ,  Issue: 2 )