By Topic

Ten reasons to use divisible load theory

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
T. G. Robertazzi ; Dept. of Electr. & Comput. Eng., State Univ. of New York, Stony Brook, NY, USA

During the past decade, divisible load theory has become a powerful tool for modeling data-intensive computational problems. DLT emerged from a desire to create intelligent sensor networks, but most recent applications involve parallel and distributed computing. Like other linear mathematical models such as Markovian queuing theory and electric resistive circuit theory, DLT offers easy computation, a schematic language, and equivalent network element modeling. While it can incorporate stochastic features, the basic model does not make statistical assumptions, which can be the Achilles' heel of a performance evaluation model.

Published in:

Computer  (Volume:36 ,  Issue: 5 )