By Topic

Efficient decision feedback equalization for sparse wireless channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Rontogiannis, A.A. ; Sch. of Natural Resourses Manage., Univ. of Ioannina, Agrinio, Greece ; Berberidis, K.

A new efficient decision feedback equalizer (DFE) appropriate for channels with long and sparse impulse response (IR) is proposed. Such channels are encountered in many high-speed wireless communications applications. It is shown that, in cases of sparse channels, the feedforward and feedback (FB) filters of the DFE have a particular structure, which can be exploited to derive efficient implementations of the DFE, provided that the time delays of the channel IR multipath components are known. This latter task is accomplished by a novel technique, which estimates the time delays based on the form of the channel input-output cross-correlation sequence in the frequency domain. A distinct feature of the resulting DFE is that the involved FB filter consists of a reduced number of active taps. As a result, it exhibits considerable computational savings, faster convergence, and improved tracking capabilities as compared with the conventional DFE. Note that faster convergence implies that a shorter training sequence is required. Moreover, the new algorithm has a simple form and its steady-state performance is almost identical to that of the conventional DFE.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:2 ,  Issue: 3 )