By Topic

Spreading and power allocation for multiple antenna transmission using decorrelating receivers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rajan, D. ; Dept. of Electr. Eng., Southern Methodist Univ., Dallas, TX, USA ; Erkip, E. ; Aazhang, B.

We propose a new scheme for multiple antenna transmission in the context of spread-spectrum signaling. The new scheme consists of using shifted Gold sequences to modulate independent information on the multiple antennas. We show that this strategy of using multiphase spreading (MPS) on different antennas greatly improves the throughput over currently known spread-spectrum multiple-antenna methods. We also find the optimal power allocation strategy among multiple transmit antennas for a fixed rate of channel state information, which might be provided via a feedback link, at the transmitter. We demonstrate the differences in optimal power distribution for maximizing capacity and minimizing probability of outage. When the transmission from the two antennas uses orthogonal spreading, we find that optimizing the power does not give much gain over the equal power transmission. However, when the transmissions are not orthogonal as in the case of MPS, then allocating power to maximize throughput gives considerable gain over equal power transmission. We also consider the effect of imperfections in the feedback channel on the optimal power allocation and show that our power allocation scheme is robust to feedback errors.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:2 ,  Issue: 3 )