By Topic

Small-signal and transient analysis of a full-bridge, zero-current-switched PWM converter using an average model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

This paper presents a detailed small-signal and transient analysis of a full bridge zero-current-switched (FB-ZCS) PWM converter designed for high voltage, high power applications using an average model. The development shows the model follows directly from the converter's steady-state analysis and is produced by inspection of the converter's instantaneous waveforms. The method used in model development can be extended to other topologies that are not easily modeled by conventional methods. The derived model is implemented in a PSPICE subcircuit and used to produce the small-signal and transient characteristics of the converter. Results obtained in the analysis of the high voltage and high power design example are validated by comparison to the actual, switched-circuit simulations.

Published in:

Power Electronics, IEEE Transactions on  (Volume:18 ,  Issue: 3 )