By Topic

Passive cancellation of common-mode noise in power electronic circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Cochrane, D. ; RF Power Syst., Northrop Grumman ES, Baltimore, MD, USA ; Chen, D.Y. ; Boroyevic, D.

It is well known that common-mode (CM) conducted electromagnetic interference (EMI) is caused by the common-mode current flowing through the parasitic capacitance of transistors, diodes, and transformers to ground in the power circuit. Because of the potential for interference with other systems it is necessary to attenuate this noise. Ordinarily this is accomplished by using a magnetic choke across the input power lines, resulting in penalties to the overall size and cost of the completed system. In order to lessen the requirement for this magnetic choke, there has been a desire to introduce noise cancellation techniques to the area of EMI. This text introduces a method of canceling the common-mode EMI by using a compensating transformer winding and a capacitor. Compared with other cancellation techniques, it is much simpler and requires no additional transistors and gate-drive circuitry since it merely adds a small copper winding and a small capacitor. By using this technique the size of the EMI filter can be reduced, especially for applications requiring high currents. In this paper, the new method for passive noise cancellation is applied to many popular converter and inverter topologies. The method, results, and ramifications of this technique are presented in order of appearance.

Published in:

Power Electronics, IEEE Transactions on  (Volume:18 ,  Issue: 3 )