By Topic

A novel maximum power point tracking technique for solar panels using a SEPIC or Cuk converter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
H. S. -H. Chung ; Dept. of Electron. & Commun. Eng., City Univ. of Hong Kong, China ; K. K. Tse ; S. Y. R. Hui ; C. M. Mok
more authors

A novel technique for efficiently extracting the maximum output power from a solar panel under varying meteorological conditions is presented. The methodology is based on connecting a pulse-width-modulated (PWM) DC/DC SEPIC or Cuk converter between a solar panel and a load or battery bus. The converter operates in discontinuous capacitor voltage mode whilst its input current is continuous. By modulating a small-signal sinusoidal perturbation into the duty cycle of the main switch and comparing the maximum variation in the input voltage and the voltage stress of the main switch, the maximum power point (MPP) of the panel can be located. The nominal duty cycle of the main switch in the converter is adjusted to a value, so that the input resistance of the converter is equal to the equivalent output resistance of the solar panel at the MPP. This approach ensures maximum power transfer under all conditions without using microprocessors for calculation. Detailed mathematical derivations of the MPP tracking technique are included. The tracking capability of the proposed technique has been verified experimentally with a 10-W solar panel at different insolation (incident solar radiation) levels and under large-signal insolation level changes.

Published in:

IEEE Transactions on Power Electronics  (Volume:18 ,  Issue: 3 )