By Topic

Experimental study of noise properties of a Ti:sapphire femtosecond laser

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ivanov, E.N. ; Dept. of Phys., Western Australia Univ., Crawley, WA, Australia ; Diddams, S.A. ; Hollberg, L.

The fidelity of a coherent link between optical and microwave frequencies is largely determined by noise processes in a mode-locked femtosecond laser. This work presents an experimental study of the noise properties of a Ti:sapphire femtosecond laser. It includes measurements of pulse repetition rate fluctuations and shot noise exhibited by the Ti:sapphire femtosecond laser. Based on the results of noise measurements, the fractional frequency stability of a microwave signal produced by the femtosecond laser has been evaluated.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:50 ,  Issue: 4 )