By Topic

FIRE: fractal indexing with robust extensions for image databases

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
R. Distasi ; Dipt. di Matematica e Informatica, Univ. di Salerno, Baronissi, Italy ; M. Nappi ; M. Tucci

As already documented in the literature, fractal image encoding is a family of techniques that achieves a good compromise between compression and perceived quality by exploiting the self-similarities present in an image. Furthermore, because of its compactness and stability, the fractal approach can be used to produce a unique signature, thus obtaining a practical image indexing system. Since fractal-based indexing systems are able to deal with the images in compressed form, they are suitable for use with large databases. We propose a system called FIRE, which is then proven to be invariant under three classes of pixel intensity transformations and under geometrical isometries such as rotations by multiples of π/2 and reflections. This property makes the system robust with respect to a large class of image transformations that can happen in practical applications: the images can be retrieved even in the presence of illumination and/or color alterations. Additionally, the experimental results show the effectiveness of FIRE in terms of both compression and retrieval accuracy.

Published in:

IEEE Transactions on Image Processing  (Volume:12 ,  Issue: 3 )