By Topic

Rate-distortion modeling for multiscale binary shape coding based on Markov random fields

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
A. Vetro ; Mitsubishi Electr. Res. Labs., Cambridge, MA, USA ; Yao Wang ; Huifang Sun

The purpose of this paper it to explore the relationship between the rate-distortion characteristics of multiscale binary shape and Markov random field (MRF) parameters. For coding, it is important that the input parameters that will be used to define this relationship be able to distinguish between the same shape at different scales, as well as different shapes at the same scale. We consider an MRF model, referred to as the Chien model, which accounts for high-order spatial interactions among pixels. We propose to use the statistical moments of the Chien model as input to a neural network to accurately predict the rate and distortion of the binary shape when coded at various scales.

Published in:

IEEE Transactions on Image Processing  (Volume:12 ,  Issue: 3 )