By Topic

A low memory zerotree coding for arbitrarily shaped objects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chorng-Yann Su ; Dept. of Ind. Educ., Nat. Taiwan Normal Univ., Hsinchu, Taiwan ; Bing-Fei Wu

The set partitioning in hierarchical trees (SPIHT) algorithm is a computationally simple and efficient zerotree coding technique for image compression. However, the high working memory requirement is its main drawback for hardware realization. We present a low memory zerotree coder (LMZC), which requires much less working memory than SPIHT. The LMZC coding algorithm abandons the use of lists, defines a different tree structure, and merges the sorting pass and the refinement pass together. The main techniques of LMZC are the recursive programming and a top-bit scheme (TBS). In TBS, the top bits of transformed coefficients are used to store the coding status of coefficients instead of the lists used in SPIHT. In order to achieve high coding efficiency, shape-adaptive discrete wavelet transforms are used to transformation arbitrarily shaped objects. A compact emplacement of the transformed coefficients is also proposed to further reduce working memory. The LMZC carefully treats "don't care" nodes in the wavelet tree and does not use bits to code such nodes. Comparison of LMZC with SPIHT shows that for coding a 768 × 512 color image, LMZC saves at least 5.3 MBytes of memory but only increases a little execution time and reduces minor peak signal-to noise ratio (PSNR) values, thereby making it highly promising for some memory limited applications.

Published in:

Image Processing, IEEE Transactions on  (Volume:12 ,  Issue: 3 )