Cart (Loading....) | Create Account
Close category search window

Test data compression and test time reduction of longest-path-per-gate tests based on Illinois scan architecture

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sharma, M. ; Illinois Univ., Urbana, IL, USA ; Patel, J.H. ; Rearick, J.

Localized delay defects, like resistive shorts, resistive opens, etc., can be effectively detected by testing the longest testable path through each wire (or gate) in the circuit. Such a delay test set is referred to as a longest-path-per-wire test set. In this paper we study test data volume and test application time reduction techniques for such tests based on the Illinois scan architecture. We present a novel ATPG flow to quickly determine longest-path-per-wire test sets under constraints imposed by the Illinois scan architecture. Results of experiments on ISCAS sequential circuits are presented. On an average we achieve a test data volume reduction of 2.79X and number of test cycles reduction of 3.28X for robust path delay, tests (as compared to the case without Illinois scan). The corresponding numbers for non-robust tests are 3.58X and 4.24X.

Published in:

VLSI Test Symposium, 2003. Proceedings. 21st

Date of Conference:

27 April-1 May 2003

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.