Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Wavelet analysis and synthesis of fractional Brownian motion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Flandrin, P. ; LTS-ICPI, Lyon, France

Fractional Brownian motion (FBM) offers a convenient modeling for nonstationary stochastic processes with long-term dependencies and 1/f-type spectral behavior over wide ranges of frequencies. Statistical self-similarity is an essential feature of FBM and makes natural the use of wavelets for both its analysis and its synthesis. A detailed second-order analysis is carried out for wavelet coefficients of FBM. It reveals a stationary structure at each scale and a power-law behavior of the coefficients' variance from which the fractal dimension of FBM can be estimated. Conditions for using orthonormal wavelet decompositions as approximate whitening filters are discussed, consequences of discretization are considered, and some connections between the wavelet point of view and previous approaches based on length measurements (analysis) or dyadic interpolation (synthesis) are briefly pointed out.<>

Published in:

Information Theory, IEEE Transactions on  (Volume:38 ,  Issue: 2 )