By Topic

Modeling and estimation of multiresolution stochastic processes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Basseville, M. ; Inst. de Recherche en Inf. et Syst. Aleatoires, Rennes, France ; Benveniste, A. ; Chou, K.C. ; Golden, S.A.
more authors

An overview is provided of the several components of a research effort aimed at the development of a theory of multiresolution stochastic modeling and associated techniques for optimal multiscale statistical signal and image processing. A natural framework for developing such a theory is the study of stochastic processes indexed by nodes on lattices or trees in which different depths in the tree or lattice correspond to different spatial scales in representing a signal or image. In particular, it is shown how the wavelet transform directly suggests such a modeling paradigm. This perspective then leads directly to the investigation of several classes of dynamic models and related notions of multiscale stationarity in which scale plays the role of a time-like variable. The investigation of models on homogeneous trees is emphasized. The framework examined here allows for consideration, in a very natural way, of the fusion of data from sensors with differing resolutions. Also, thanks to the fact that wavelet transforms do an excellent job of 'compressing' large classes of covariance kernels, it is seen that these modeling paradigms appear to have promise in a far broader context than one might expect.<>

Published in:

Information Theory, IEEE Transactions on  (Volume:38 ,  Issue: 2 )