By Topic

Entropy-based algorithms for best basis selection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Coifman, R.R. ; Dept. of Math., Yale Univ., New Haven, CT, USA ; Wickerhauser, M.V.

Adapted waveform analysis uses a library of orthonormal bases and an efficiency functional to match a basis to a given signal or family of signals. It permits efficient compression of a variety of signals, such as sound and images. The predefined libraries of modulated waveforms include orthogonal wavelet-packets and localized trigonometric functions, and have reasonably well-controlled time-frequency localization properties. The idea is to build out of the library functions an orthonormal basis relative to which the given signal or collection of signals has the lowest information cost. The method relies heavily on the remarkable orthogonality properties of the new libraries: all expansions in a given library conserve energy and are thus comparable. Several cost functionals are useful; one of the most attractive is Shannon entropy, which has a geometric interpretation in this context.<>

Published in:

Information Theory, IEEE Transactions on  (Volume:38 ,  Issue: 2 )