By Topic

Singularity detection and processing with wavelets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
S. Mallat ; Courant Inst., New York Univ., NY, USA ; W. L. Hwang

The mathematical characterization of singularities with Lipschitz exponents is reviewed. Theorems that estimate local Lipschitz exponents of functions from the evolution across scales of their wavelet transform are reviewed. It is then proven that the local maxima of the wavelet transform modulus detect the locations of irregular structures and provide numerical procedures to compute their Lipschitz exponents. The wavelet transform of singularities with fast oscillations has a particular behavior that is studied separately. The local frequency of such oscillations is measured from the wavelet transform modulus maxima. It has been shown numerically that one- and two-dimensional signals can be reconstructed, with a good approximation, from the local maxima of their wavelet transform modulus. As an application, an algorithm is developed that removes white noises from signals by analyzing the evolution of the wavelet transform maxima across scales. In two dimensions, the wavelet transform maxima indicate the location of edges in images.<>

Published in:

IEEE Transactions on Information Theory  (Volume:38 ,  Issue: 2 )