By Topic

Multiresolution analysis. Haar bases, and self-similar tilings of R/sup n/

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Grochenig, K. ; Dept. of Math., Connecticut Univ., Storrs, CT, USA ; Madych, W.R.

Orthonormal bases for L/sup 2/(R/sup n/) are constructed that have properties that are similar to those enjoyed by the classical Haar basis for L/sup 2/(R). For example, each basis consists of appropriate dilates and translates of a finite collection of 'piecewise constant' functions. The construction is based on the notion of multiresolution analysis and reveals an interesting connection between the theory of compactly supported wavelet bases and the theory of self-similar tilings.<>

Published in:

Information Theory, IEEE Transactions on  (Volume:38 ,  Issue: 2 )