By Topic

Automated EEG feature selection for brain computer interfaces

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Schroder, M. ; Wilhelm Schickard Inst. fur Informatik, Tubingen Univ., Germany ; Bogdan, M. ; Hinterberger, T. ; Birbaumer, N.

A brain computer interface (BCI) utilizes signals derived from electroencephalography (EEG) to establish a connection between a person's state of mind and a computer based signal processing system that interprets the EEG signals. The choice of suitable features of the available EEG signals is crucial for good BCI communication. The optimal set of features is strongly dependent on the subjects and on the used experimental paradigm. Based upon EEG data of an existing BCI system, we present a wrapper method for the automated selection of features. The proposed method combines a genetic algorithm (GA) for the selection of feature with a support vector machine (SVM) for their evaluation. Applying this GA-SVM method to data of several subjects and two different experimental paradigms, we show that our approach leads to enhanced or even optimal classification accuracy.

Published in:

Neural Engineering, 2003. Conference Proceedings. First International IEEE EMBS Conference on

Date of Conference:

20-22 March 2003