By Topic

A linear programming-based algorithm for floorplanning in VLSI design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jae-Gon Kim ; Sch. of Ind. Syst. & Eng., Georgia Inst. of Technol., Atlanta, GA, USA ; Yeong-Dae Kim

In this paper, we consider a floorplanning problem in the physical design of very large scale integration. We focus on the problem of placing a set of blocks (modules) on a chip with the objective of minimizing area of the chip as well as total wire length. The blocks have different areas and their shapes are either fixed (predetermined) or flexible (to be determined). We use the sequence-pair suggested by Murata et al. (see ibid, vol.15, no.12, p.1518-1524, 1996) to represent the topology of nonslicing floorplans and present two methods to obtain a floorplan from a sequence-pair. One is a construction method, and the other is a method based on a linear programming model. The two methods are embedded in simulated annealing algorithms, which are used to find a near optimal floorplan. Results of computational experiments on the Microelectronics Center of North Carolina benchmark examples show that the proposed algorithms work better than existing algorithms.

Published in:

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems  (Volume:22 ,  Issue: 5 )