By Topic

Technology mapping algorithms for hybrid FPGAs containing lookup tables and PLAs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Krishnamoorthy, S. ; Dept. of Electr. & Comput. Eng., Univ. of Massachusetts, Amherst, MA, USA ; Tessier, R.

Programmable devices containing lookup tables (LUTs) and programmable logic arrays (PLAs) provide a heterogeneous target platform for user designs. Present commercial tools, which target these hybrid devices, require hand partitioning of user designs to isolate logic for each type of logic resource. In this paper, an automated technology mapping tool, hybridmap , is presented that identifies design logic partitions as suitable for either LUT or PLA implementation. A breadth-first search-based subgraph extraction and evaluation heuristic is integrated with product term (Pterm) count, area, and delay estimators to guide the technology mapping process. Hybridmap can be adapted to target a variety of PLA architectures and can accommodate user-provided timing constraints. It is shown that when timing constrained, hybridmap reduces LUT consumption for Apex20KE devices by 8% and when unconstrained by 14% by migrating logic from LUTs to Pterm structures. Hybridmap is shown to outperform previous mapping approaches for Apex20KE-type devices by up to 22%.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:22 ,  Issue: 5 )