By Topic

Enhanced output power of InGaN-GaN light-emitting diodes with high-transparency nickel-oxide-indium-tin-oxide Ohmic contacts

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Shyi-Ming Pan ; Opto-Electron. & Syst. Labs., Ind. Technol. Res. Inst., Hsinchu, Taiwan ; Ru-Chin Tu ; Yu-Mei Fan ; Ruey-Chyn Yeh
more authors

This study develops a highly transparent nickel-oxide (NiO/sub x/)-indium-tin-oxide (ITO) transparent Ohmic contact with excellent current spreading for p-GaN to increase the optical output power of nitride-based light-emitting diodes (LEDs). The NiO/sub x/-ITO transparent Ohmic contact layer was prepared by electron beam in-situ evaporation without postdeposition annealing. Notably, the transmittance of the NiO/sub x/-ITO exceeds 90% throughout the visible region of the spectrum and approaches 98% at 470 nm. Moreover, GaN LED chips with dimensions of 300 × 300 μm fabricated with the NiO/sub x/-ITO transparent Ohmic contact were developed and produced a low forward voltage of 3.4 V under a nominal forward current of 20 mA and a high optical output power of 6.6 mW. The experimental results indicate that NiO/sub x/-ITO bilayer Ohmic contact with excellent current spreading and high transparency is suitable for fabricating high-brightness GaN-based light-emitting devices.

Published in:

Photonics Technology Letters, IEEE  (Volume:15 ,  Issue: 5 )