By Topic

A quantum correction based on Schrodinger equation applied to Monte Carlo device simulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Winstead, B. ; Dept. of Electr. & Comput. Eng., Univ. of Illinois, Urbana, IL, USA ; Ravaioli, U.

A full-band Monte Carlo model has been coupled to a Schrodinger equation solver to account for the size quantization effects that occur at heterojunctions, such as the oxide interface in MOS devices. The overall model retains the features of the well-developed semi-classical approach, by treating self-consistently the Schrodinger solution as a correction to the particle-based Monte Carlo. The simulator has been benchmarked by comparing results for MOS capacitors and double gate structures with a self-consistent quantum solution, showing that the proposed approach is efficient and accurate. This quantum correction methodology is extended to device simulation, by accounting for the interplay between confinement and transport through a parameter which we call "transverse" temperature. This approach appears to be valid even for nanometer-scale devices in which nonequilibrium ballistic transport is occurring. We present simulations of a 25-nm MOSFET and compare results obtained with and without the quantum correction.

Published in:

Electron Devices, IEEE Transactions on  (Volume:50 ,  Issue: 2 )