By Topic

Substrate-triggered SCR device for on-chip ESD protection in fully silicided sub-0.25-μm CMOS process

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ming-Dou Ker ; Nanoelectronics & Gigascale Syst. Lab., Nat. Chiao-Tung Univ., Hsinchu, Taiwan ; Kuo-Chun Hsu

The turn-on mechanism of a silicon-controlled rectifier (SCR) device is essentially a current triggering event. While a current is applied to the base or substrate of the SCR device, it can be quickly triggered into its latching state. In this paper, a novel design concept to turn on the SCR device by applying the substrate-triggered technique is first proposed for effective on-chip electrostatic discharge (ESD) protection. This novel substrate-triggered SCR device has the advantages of controllable switching voltage and adjustable holding voltage and is compatible with general CMOS processes without extra process modification such as the silicide-blocking mask and ESD implantation. Moreover, the substrate-triggered SCR devices can be stacked in ESD protection circuits to avoid the transient-induced latch-up issue. The turn-on time of the proposed substrate-triggered SCR devices can be reduced from 27.4 to 7.8 ns by the substrate-triggering technique. The substrate-triggered SCR device with a small active area of only 20 μm × 20 μm can sustain the HBM ESD stress of 6.5 kV in a fully silicided 0.25-μm CMOS process.

Published in:

Electron Devices, IEEE Transactions on  (Volume:50 ,  Issue: 2 )