Cart (Loading....) | Create Account
Close category search window

VARIOT: a novel multilayer tunnel barrier concept for low-voltage nonvolatile memory devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

Low-voltage low-power nonvolatile floating-gate memory device operation can be achieved by using alternative tunnel barriers consisting of at least two dielectric layers with different dielectric constants k. Low-k/high-k (asymmetric) and low-k/high-k/low-k (symmetric) barriers enable steeper tunneling current-voltage characteristics. Their implementation is possible with high-k dielectric materials that are currently investigated for SiO/sub 2/ replacement in sub-100-nm CMOS technologies. We show that a reduction in programming voltages of up to 50% can be achieved. This would significantly reduce the circuitry required to generate the high voltages on a nonvolatile memory chip, while maintaining sufficient performance and reliability.

Published in:

Electron Device Letters, IEEE  (Volume:24 ,  Issue: 2 )

Date of Publication:

Feb. 2003

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.