By Topic

Linear pose estimation from points or lines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ansar, A. ; Jet Propulsion Lab., California Inst. of Technol., Pasadena, CA, USA ; Daniilidis, K.

Estimation of camera pose from an image of n points or lines with known correspondence is a thoroughly studied problem in computer vision. Most solutions are iterative and depend on nonlinear optimization of some geometric constraint, either on the world coordinates or on the projections to the image plane. For real-time applications, we are interested in linear or closed-form solutions free of initialization. We present a general framework which allows for a novel set of linear solutions to the pose estimation problem for both n points and n lines. We then analyze the sensitivity of our solutions to image noise and show that the sensitivity analysis can be used as a conservative predictor of error for our algorithms. We present a number of simulations which compare our results to two other recent linear algorithms, as well as to iterative approaches. We conclude with tests on real imagery in an augmented reality setup.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:25 ,  Issue: 5 )