By Topic

Properties of embedding methods for similarity searching in metric spaces

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hjaltason, G.R. ; Sch. Comput. Sci., Waterloo Univ., Ont., Canada ; Samet, H.

Complex data types-such as images, documents, DNA sequences, etc.-are becoming increasingly important in modern database applications. A typical query in many of these applications seeks to find objects that are similar to some target object, where (dis)similarity is defined by some distance function. Often, the cost of evaluating the distance between two objects is very high. Thus, the number of distance evaluations should be kept at a minimum, while (ideally) maintaining the quality of the result. One way to approach this goal is to embed the data objects in a vector space so that the distances of the embedded objects approximates the actual distances. Thus, queries can be performed (for the most part) on the embedded objects. We are especially interested in examining the issue of whether or not the embedding methods will ensure that no relevant objects are left out. Particular attention is paid to the SparseMap, FastMap, and MetricMap embedding methods. SparseMap is a variant of Lipschitz embeddings, while FastMap and MetricMap are inspired by dimension reduction methods for Euclidean spaces. We show that, in general, none of these embedding methods guarantee that queries on the embedded objects have no false dismissals, while also demonstrating the limited cases in which the guarantee does hold. Moreover, we describe a variant of SparseMap that allows queries with no false dismissals. In addition, we show that with FastMap and MetricMap, the distances of the embedded objects can be much greater than the actual distances. This makes it impossible (or at least impractical) to modify FastMap and MetricMap to guarantee no false dismissals.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:25 ,  Issue: 5 )