By Topic

Efficient DDD-based term generation algorithm for analog circuit behavioral modeling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tan, S.X. ; Dept. of Electr. Eng., California Univ., Riverside, CA, USA ; Shi, C.-J.R.

An efficient approach to generating symbolic product terms for behavioral modeling of large linear analog circuits is presented. The approach is based on a compact determinant decision diagram (DDD) representation of transfer functions and characteristics of analog circuits. The new algorithm is based on the concept that a dominant term in a DDD graph can be found by searching the shortest path in the graph. But instead of traversing a whole DDD graph each time, we show that a shortest path can be found by just updating a small number of the newly added vertices after the first shortest path is found. Experimental results indicate that the new symbolic term generation algorithm outperforms both pure shortest path based algorithm and dynamic programming based algorithm, which is the fastest symbolic term generation algorithm published so far.

Published in:

Design Automation Conference, 2003. Proceedings of the ASP-DAC 2003. Asia and South Pacific

Date of Conference:

21-24 Jan. 2003