Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Enhanced multiwave mixing interactions in semiconductor optical amplifiers via pump modulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
McCall, M.W. ; Dept. of Phys., Imperial Coll., London, UK

It is demonstrated that, by modulating a semiconductor optical amplifier at a frequency determined by the detuning between the pump and probe in a collinear four wave mixing geometry, the enhancements in gain and reflectivity of two to three orders of magnitude are possible for remarkably small modulation depths (m=10-2). The mechanism of frequency mixing using population pulsations in semiconductor laser amplifiers is summarized. In particular, the modification to the standard geometry to achieve enhancements is discussed. The appropriate four wave mixing equations including current modulation terms are solved analytically in the undepleted pump approximation. The analytic forms for transmission gain and phase conjugate reflectivity in several cases of interest are computed. In particular, the case in which four wave mixing is absent and energy transfer occurs solely as a result of the current modulation is examined

Published in:

Quantum Electronics, IEEE Journal of  (Volume:28 ,  Issue: 1 )