Cart (Loading....) | Create Account
Close category search window
 

Virtual-topology adaptation for WDM mesh networks under dynamic traffic

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gencata, A. ; Dept. of Comput. Sci., Univ. of California, Davis, CA, USA ; Mukherjee, B.

We present a new approach to the virtual-topology reconfiguration problem for a wavelength-division-multiplexing- based optical wide-area mesh network under dynamic traffic demand. By utilizing the measured Internet backbone traffic characteristics, we propose an adaptation mechanism to follow the changes in traffic without a priori knowledge of the future traffic pattern. Our work differs from most previous studies on this subject which redesign the virtual topology according to an expected (or known) traffic pattern, and then modify the connectivity to reach the target topology. The key idea of our approach is to adapt the underlying optical connectivity by measuring the actual traffic load on lightpaths continuously (periodically based on a measurement period) and reacting promptly to the load imbalances caused by fluctuations on the traffic, by either adding or deleting one or more lightpath at a time. When a load imbalance is encountered, it is corrected either by tearing down a lightpath that is lightly loaded or by setting up a new lightpath when congestion occurs. We introduce high and low watermark parameters on lightpath loads to detect any over- or underutilized lightpath, and to trigger an adaptation step. We formulate an optimization problem which determines whether or not to add or delete lightpaths at the end of a measurement period, one lightpath at a time, as well as which lightpath to add or delete. This optimization problem turns out to be a mixed-integer linear program. Simulation experiments employing the adaptation algorithm on realistic network scenarios reveal interesting effects of the various system parameters (high and low watermarks, length of the measurement period, etc.). Specifically, we find that this method adapts very well to the changes in the offered traffic.

Published in:

Networking, IEEE/ACM Transactions on  (Volume:11 ,  Issue: 2 )

Date of Publication:

Apr 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.