Cart (Loading....) | Create Account
Close category search window

Analysis of IR-drop scaling with implications for deep submicron P/G network designs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ajami, A.H. ; Dept. of Electr. Eng., Univ. of Southern California, Los Angeles, CA, USA ; Banerjee, K. ; Mehrotra, A. ; Pedram, M.

This paper presents a detailed analysis of the power-supply voltage (IR) drop scaling in DSM technologies. For the first time, the effects of temperature, electromigration and interconnect technology scaling (including resistivity increase of Cu interconnects due to electron surface scattering and finite barrier thickness) are taken into consideration during this analysis. It is shown that the IR-drop effect in the power/ground (P/G) network increases rapidly with technology scaling, and using well-known counter measures such as wire-sizing and decoupling capacitor insertion with resource allocation schemes that are typically used in the present designs may not be sufficient to limit the voltage fluctuations over the power grid for future technologies. It is also shown that such voltage drops on power lines of switching devices in a clock network can introduce significant amount of skew which in turn degrades the signal integrity.

Published in:

Quality Electronic Design, 2003. Proceedings. Fourth International Symposium on

Date of Conference:

24-26 March 2003

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.