By Topic

A generalized divergence measure for robust image registration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yun He ; Tality Corp., Cary, NC, USA ; Hamza, A.B. ; Krim, H.

Entropy-based divergence measures have shown promising results in many areas of engineering and image processing. We define a new generalized divergence measure, namely, the Jensen-Renyi (1996, 1976) divergence. Some properties such as convexity and its upper bound are derived. Based on the Jensen-Renyi divergence, we propose a new approach to the problem of image registration. Some appealing advantages of registration by Jensen-Renyi divergence are illustrated, and its connections to mutual information-based registration techniques are analyzed. As the key focus of this paper, we apply Jensen-Renyi divergence for inverse synthetic aperture radar (ISAR) image registration. The goal is to estimate the target motion during the imaging time. Our approach applies Jensen-Renyi divergence to measure the statistical dependence between consecutive ISAR image frames, which would be maximal if the images are geometrically aligned. Simulation results demonstrate that the proposed method is efficient and effective.

Published in:

Signal Processing, IEEE Transactions on  (Volume:51 ,  Issue: 5 )