By Topic

Effect of RAM amount on the thermal behavior of CPU operating under a heavy computational load

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
M. Naghedolfeizi ; Fort Valley State Univ., GA, USA ; S. Arora ; S. Garcia ; N. Yousif

The purpose of this research was to investigate the effects of different RAM amount and fan failure on bulk CPU temperature rises while operating under a heavy computational load. Two sets of experiments, each with varying amounts of RAM were carried out under CPU cooling fan-on and fan-off conditions. A personal computer with an Intel Pentium III CPU was used to conduct the experiments. The computational load was the multiplication of two dimensional matrices (3100 by 3100) containing double precision numbers. To monitor temperature rises, sensitive thermocouples were installed on the CPU heat-sink, the RAM module, and the hard disk. This paper demonstrates that CPU temperature increases as more RAM becomes available to perform the computation. The authors hypothesize that the increase in CPU temperature is correlated to full CPU utilization to carry out a heavy computational load.

Published in:

Semiconductor Thermal Measurement and Management Symposium, 2003. Ninteenth Annual IEEE

Date of Conference:

11-13 March 2003