By Topic

Generic on-line discovery of quantitative models for service level management

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Yixin Diao ; IBM TJ Watson Res. Center, Yorktown Heights, NY, USA ; F. Eskesen ; S. Froehlich ; J. L. Hellerstein
more authors

Quantitative models are needed for a variety of management tasks, including (a) identification of critical variables to use for health monitoring, (b) anticipating service level violations by using predictive models, and (c) on-going optimization of configurations. Unfortunately, constructing quantitative models requires specialized skills that are in short supply. Even worse, rapid changes in provider configurations and the evolution of business demands mean that quantitative models must be updated on an on-going basis. This paper describes an architecture and algorithms for on-line discovery of quantitative models without prior knowledge of the managed elements. The architecture makes use of an element schema that describes managed elements using the common information model (CIM). Algorithms are presented for selecting a subset of the element metrics to use as explanatory variables in a quantitative model and for constructing the quantitative model itself. We further describe a prototype system based on this architecture that incorporates these algorithms. We apply the prototype to on-line estimation of response times for DB2 Universal Database under a TPC-W workload. Of the approximately 500 metrics available from the DB2 performance monitor, our system chooses 3 to construct a model that explains 72% of the variability of response time.

Published in:

Integrated Network Management, 2003. IFIP/IEEE Eighth International Symposium on

Date of Conference:

24-28 March 2003