By Topic

Generation and transmission of millimeter-wave data-modulated optical signals using an optical injection phase-lock loop

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Johansson, L.A. ; Dept. of Electron. & Electr. Eng., Univ. Coll. London, UK ; Seeds, A.J.

Generation and transmission of millimeter-wave data-modulated optical signals is presented using an optical injection phase-lock loop (OIPLL). Millimeter-wave signal generation is demonstrated with wide locking range, 30-GHz low phase noise level, -93 dBc/Hz, and a wide frequency tuning range, 4-60 GHz generation demonstrated using optical injection locking only, verified by using OIPLL in the 26-40 GHz range. The OIPLL is also used to transmit error-free 140-Mb/s amplitude shift keying and 68-Mb/s differential phase-shift keying (DPSK) modulated millimeter-wave signals over up to 65 km of uncompensated standard singlemode fiber. The DPSK system uses reference frequency modulation, eliminating the need for optical amplification.

Published in:

Lightwave Technology, Journal of  (Volume:21 ,  Issue: 2 )