We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Power penalties due to in-band and out-of-band dispersion in FBG cascades

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

We measure the in-band dispersion penalty in a cascade of five 50-GHz low-dispersion linear-phase fiber Bragg gratings (FBGs) and compare the results with conventional apodised FBGs. At the 0.5-dB power penalty level, the usable bandwidth of a single linear-phase FBG (40 GHz) is twice as wide as that of a conventional apodised FBG (19 GHz). The bandwidth-utilization factor of a single linear-dispersion grating is 89%, while for the five-grating cascade, it is 76%. To our knowledge, these are the highest values reported to date for cascaded optical devices. The corresponding factors for the conventional gratings are 53% and 31%. We also measure the additional penalty on a dropped channel caused by a cascade of five adjacent-channel gratings. The bandwidth narrowing due to the adjacent-channel FBGs is 6 GHz both for linear-phase and conventional FBGs, giving a usable bandwidth of 34 GHz (linear-phase) and 13 GHz (conventional).

Published in:

Lightwave Technology, Journal of  (Volume:21 ,  Issue: 2 )